首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30509篇
  免费   337篇
  国内免费   238篇
安全科学   862篇
废物处理   1098篇
环保管理   4183篇
综合类   4863篇
基础理论   8754篇
环境理论   22篇
污染及防治   7986篇
评价与监测   1803篇
社会与环境   1311篇
灾害及防治   202篇
  2021年   199篇
  2020年   172篇
  2019年   231篇
  2018年   423篇
  2017年   408篇
  2016年   592篇
  2015年   542篇
  2014年   727篇
  2013年   2194篇
  2012年   888篇
  2011年   1314篇
  2010年   1083篇
  2009年   1092篇
  2008年   1306篇
  2007年   1381篇
  2006年   1236篇
  2005年   1036篇
  2004年   1049篇
  2003年   961篇
  2002年   980篇
  2001年   1275篇
  2000年   874篇
  1999年   559篇
  1998年   438篇
  1997年   448篇
  1996年   450篇
  1995年   495篇
  1994年   449篇
  1993年   393篇
  1992年   419篇
  1991年   382篇
  1990年   381篇
  1989年   425篇
  1988年   350篇
  1987年   303篇
  1986年   277篇
  1985年   307篇
  1984年   289篇
  1983年   322篇
  1982年   326篇
  1981年   276篇
  1980年   245篇
  1979年   272篇
  1978年   232篇
  1977年   197篇
  1976年   202篇
  1975年   193篇
  1974年   172篇
  1973年   172篇
  1972年   199篇
排序方式: 共有10000条查询结果,搜索用时 890 毫秒
101.
Daily fine particulate matter (PM2.5) samples were collected at Gwangju, Korea, during the Aerosol Characterization Experiments (ACE)-Asia Project to determine the chemical properties of PM2.5 originating from local pollution and Asian dust (AD) storms. During the study period, two significant events occurred on April 10-13 and 24-25, 2001, and a minor event occurred on April 19, 2001. Based on air mass transport pathways identified by back-trajectory calculation, the PM2.5 dataset was classified into three types of aerosol populations: local pollution and two AD aerosol types. The two AD types were transported along different pathways. One originated from Gobi desert area in Mongolia, passing through Hunshandake desert in Northern Inner Mongolia, urban and polluted regions of China (AD1), and the other originated in sandy deserts located in the Northeast Inner Mongolia Plateau and then flowed southward through the Korean peninsula (AD2). During the AD2 event, a smoke plume that originated in North Korea was transported to our study site. Mass balance closures show that crustal materials were the most significant species during both AD events, contributing -48% to the PM2.5 mass; sulfate aerosols (19.1%) and organic matter (OM; 24.6%) were the second greatest contributors during the AD1 and AD2 periods, respectively, indicating that aerosol properties were dependent on the transport pathway. The sulfate concentration constituted only 6.4% (4.5 microg/m3) of the AD2 PM2.5 mass. OM was the major chemical species in the local pollution-dominated PM2.5 aerosols, accounting for 28.7% of the measured PM2.5 mass, followed by sulfate (21.4%), nitrate (15%), ammonium (12.8%), elemental carbon (8.9%), and crustal material (6.5%). Together with substantial enhancement of the crustal elements (Mg, Al, K, Ca, Sc, Ti, Mn, Fe, Sr, Zr, Ba, and Ce), higher concentrations of pollution elements (S, V, Ni, Zn, As, Cd, and Pb) were observed during AD1 and AD2 than during the local pollution period, indicating that, in addition to crustal material, the AD dust storms also had a significant influence on anthropogenic elements.  相似文献   
102.
In order to reduce the environmental impact due to land disposal of oil fly ash from power plants and to valorize this waste material, the removal of vanadium was investigated using leaching processes (acidic and alkaline treatments), followed by a second step of metal recovery from leachates involving either solvent extraction or selective precipitation. Despite a lower leaching efficiency (compared to sulfuric acid), sodium hydroxide was selected for vanadium leaching since it is more selective for vanadium (versus other transition metals). Precipitation was preferred to solvent extraction for the second step in the treatment since: (a) it is more selective; enabling complete recovery of vanadate from the leachate in the form of pure ammonium vanadate; and (b) stripping of the loaded organic phase (in the solvent extraction process) was not efficient. Precipitation was performed in a two-step procedure: (a) aluminum was first precipitated at pH 8; (b) then ammonium chloride was added at pH 5 to bring about vanadium precipitation.  相似文献   
103.
Abstract: Few studies exist that evaluate or apply pesticide transport models based on measured parent and metabolite concentrations in fields with subsurface drainage. Furthermore, recent research suggests pesticide transport through exceedingly efficient direct connections, which occur when macropores are hydrologically connected to subsurface drains, but this connectivity has been simulated at only one field site in Allen County, Indiana. This research evaluates the Root Zone Water Quality Model (RZWQM) in simulating the transport of a parent compound and its metabolite at two subsurface drained field sites. Previous research used one of the field sites to test the original modification of the RZWQM to simulate directly connected macropores for bromide and the parent compound, but not for the metabolite. This research will evaluate RZWQM for parent/metabolite transformation and transport at this first field site, along with evaluating the model at an additional field site to evaluate whether the parameters for direct connectivity are transferable and whether model performance is consistent for the two field sites with unique soil, hydrologic, and environmental conditions. Isoxaflutole, the active ingredient in BALANCE® herbicide, was applied to both fields. Isoxaflutole rapidly degrades into a metabolite (RPA 202248). This research used calibrated RZWQM models for each field based on observed subsurface drain flow and/or edge of field conservative tracer concentrations in subsurface flow. The calibrated models for both field sites required a portion (approximately 2% but this fraction may require calibration) of the available water and chemical in macropore flow to be routed directly into the subsurface drains to simulate peak concentrations in edge of field subsurface drain flow shortly after chemical applications. Confirming the results from the first field site, the existing modification for directly connected macropores continually failed to predict pesticide concentrations on the recession limbs of drainage hydrographs, suggesting that the current strategy only partially accounts for direct connectivity. Thirty‐year distributions of annual mass (drainage) loss of parent and metabolite in terms of percent of isoxaflutole applied suggested annual simulated percent losses of parent and metabolite (3.04 and 1.31%) no greater in drainage than losses in runoff on nondrained fields as reported in the literature.  相似文献   
104.
A new method to diagnose the environmental sustainability of specific orchard management practices was derived and tested. As a significant factor for soil quality, the soil carbon (C) management in the topsoil of the tree-row of an integrated and organic apple orchard was selected and compared. Soil C management was defined as land management practices that maintain or increase soil C. We analyzed the impact of the soil C management on biological (microbial biomass C, basal respiration, dehydrogenase activity, respiratory quotient) and physical (aggregate stability, amount of plant-available water, conductive mean pore diameter near water saturation) soil properties. Soil in the alley acted as a reference for the managed soil in the tree row. The total and hot-water-extractable C amounts served as a combined proxy for the soil C management. The soil C management accounted for 0 to 81% of the degradation or enhancement of biophysical soil properties in the integrated and organic system. In the integrated system, soil C management led to a loss of C in the top 0.3 m of the tree row within 12 yr, causing a decrease in microbial activities. In the tree row of the organic orchard, C loss occurred in the top 0.1 m, and the decrease in microbial activities was small or not significant. Regarding physical soil properties, the C loss in the integrated system led to a decrease of the aggregate stability, whereas it increased in the organic system. Generally, the impact of soil C management was better correlated with soil microbial than with the physical properties. With respect to environmental soil functions that are sensitive to the decrease in microbial activity or aggregate stability, soil C management was sustainable in the organic system but not in the integrated system.  相似文献   
105.
A passive air sampler was developed for collecting polycyclic aromatic hydrocarbons (PAHs) in air mass from various directions. The airflow velocity within the sampler was assessed for its responses to ambient wind speed and direction. The sampler was examined for trapped particles, evaluated quantitatively for influence of airflow velocity and temperature on PAH uptake, examined for PAH uptake kinetics, calibrated against active sampling, and finally tested in the field. The airflow volume passing the sampler was linearly proportional to ambient wind speed and sensitive to wind direction. The uptake rate for an individual PAH was a function of airflow velocity, temperature and the octanol-air partitioning coefficient of the PAH. For all PAHs with more than two rings, the passive sampler operated in a linear uptake phase for three weeks. Different PAH concentrations were obtained in air masses from different directions in the field test.  相似文献   
106.
Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.  相似文献   
107.
This paper mainly aims to study the linear element influence on the estimation of vascular plant species diversity in five Mediterranean landscapes modeled as land cover patch mosaics. These landscapes have several core habitats and a different set of linear elements -habitat edges or ecotones, roads or railways, rivers, streams and hedgerows on farm land- whose plant composition were examined. Secondly, it aims to check plant diversity estimation in Mediterranean landscapes using parametric and non-parametric procedures, with two indices: Species richness and Shannon index.Land cover types and landscape linear elements were identified from aerial photographs. Their spatial information was processed using GIS techniques. Field plots were selected using a stratified sampling design according to relieve and tree density of each habitat type. A 50×20 m2 multi-scale sampling plot was designed for the core habitats and across the main landscape linear elements. Richness and diversity of plant species were estimated by comparing the observed field data to ICE (Incidence-based Coverage Estimator) and ACE (Abundance-based Coverage Estimator) non-parametric estimators.The species density, percentage of unique species, and alpha diversity per plot were significantly higher (p < 0.05) in linear elements than in core habitats. ICE estimate of number of species was 32% higher than of ACE estimate, which did not differ significantly from the observed values. Accumulated species richness in core habitats together with linear elements, were significantly higher than those recorded only in the core habitats in all the landscapes. Conversely, Shannon diversity index did not show significant differences.  相似文献   
108.
We describe the development and validation of a portable system comprising an air sampler coupled to an automated flow injection analysis device. The system is able to monitor airborne concentrations of subtilisin-type enzymes in the workplace atmosphere on a continuous basis. Sampling is in two stages: using a sampling head that is designed to mimic human respiration at approx. 1 m s(-1) at a sampling rate of 600 l min(-1). In the second stage, the captured particles are deposited by impaction from the air stream onto the inner surface of a cyclone that is continuously washed with a jet of buffer solution. Deposited particles are then washed into a reservoir from which samples are taken every 5-6 min and injected automatically into a continuous flow injection analysis system. Proteolytic enzyme in the sample passes through a bioreactor maintained at about 40 degrees C. This contains a cellulose solid phase matrix on which is covalently immobilised Texas Red-labelled gelatin as substrate. The passing enzyme partially digests the substrate releasing fluorophore that is detected down stream in a flow cell coupled to a fluorimeter. The system is calibrated using enzyme standards and the intensity of the resulting peaks from the ex-air samples is converted to airborne concentrations using a mathematical model programmed into a PC. The system has a limit of detection of 4.8 ng m(-3) and a dynamic range of 5-60 ng m(-3). The within assay precision (RSD) is 6.3-9.6% over this range. The within batch precision is 20.3% at 20 ng m(-3) and the corresponding between batch value is 19.5%. The system has been run for periods up to 8 h in the laboratory and for up to 4 h at a factory site and the values obtained compared with time-averaged values obtained from a conventional Galley sampler and in-house analysis when reasonable agreement of the results was observed. The stability of the system over 21 days of continuous use with standards injected periodically was studied. Linearity was observed for all the standard plots throughout. At the end of 21 days, after a total exposure equivalent to 2395 ng ml(-1) of Savinase, the signal due to the 5.0 ng ml(-1) standard was still easily detectable.  相似文献   
109.
In wetlands, translocation of Fe and Mn from reducing to oxidizing zones creates localized enrichments and depletions of oxide minerals. In zones of enrichment, oxides cement matrix particles together into aggregates. In this paper, we describe the various Fe- and Mn-cemented features present in the 1 to 2-mm size fraction of mine-waste contaminated wetland soils of the Coeur d'Alene (CDA) River Basin in northern Idaho. These aggregates are categorized based on color and morphology. Total Fe and Mn concentrations are also reported. Distribution of the aggregates in soil profiles along an elevation transect with varying water table heights was investigated. Six distinct categories of aggregates were characterized in the 1 to 2-mm size fraction. The two most predominant categories were aggregates cemented by only Fe oxides and aggregates cemented by a mixture of Fe and Mn oxides. Iron-depleted aggregates, Fe and Mn-cemented sand aggregates, and root channel linings were also identified. The remaining aggregates were categorized into a catch-all category that consisted of primarily charcoal particles. The highest Fe content was in the root channel linings, and the highest Mn content was in the Fe/Mn cemented particles. Iron-cemented aggregates were most common in surface horizons at all sites, and root channels were most common in the 30 to 45-cm core at the lowland point, reflecting the presence of deep rooting vegetation at this site. Spatial distributions of other aggregates at the site were not significant.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号